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Abstract
Much attention has been paid to estimating the causal effect of adherence to a randomized protocol using instrumental 

variables to adjust for unmeasured confounding. Researchers tend to use the instrumental variable within one of the three 
main frameworks: regression with an endogenous variable, principal stratification, or structural-nested modeling. We 

found in our literature review that even in simple settings, causal interpretations of analyses with endogenous regressors 
can be ambiguous or rely on a strong assumption that can be diffi- cult to interpret. Principal stratification and structural-

nested modeling are alternative frameworks that render unambiguous causal interpretations based on assumptions that 
are, arguably, easier to interpret. Our interest stems from a wish to estimate the effect of cluster-level adherence on 

individual-level binary outcomes with a three-armed cluster-randomized trial and polytomous adherence. Principal 
stratification approaches to this problem are quite challenging because of the sheer number of principal strata involved. 

Therefore, we developed a structural-nested modeling approach and, in the process, extended the methodology to 
accommodate cluster- randomized trials with unequal probability of selecting individuals. Furthermore, we developed a 
method to implement the approach with relatively simple programming. The approach works quite well, but when the 

structural-nested model does not fit the data, there is no solution to the estimating equation. We investigate the 
performance of the approach using simulated data, and we also use the approach to estimate the effect on pupil absence of 
school-level adherence to a randomized water, sanitation, and hygiene intervention in western Kenya. Copyright © 2013 

John Wiley & Sons, Ltd.
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1. Introduction

In our collaboration to assess the impact of a school-based water, sanitation, and hygiene (WASH) inter- 
vention on pupil absence in Nyanza Province, Kenya [1], one of the goals was to estimate the effect 
of the received components of the intervention, as distinct from the effect of the randomly assigned 
components. The nature of the study design and the primary research questions spurred our interest 
in statistical methods to estimate the effect of cluster-level adherence on individual-level binary out- 
comes with a three-armed cluster-randomized trial and polytomous adherence [2]. Much attention has 
been paid to estimating the causal effect of adherence to a randomized protocol using the randomization 
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assignment as an instrumental variable to adjust for unmeasured confounding. Though not without varia- 
tion, researchers tend to use instrumental variables within one of three main frameworks: regression with 
an endogenous variable [3–9], principal stratification [10–21], or structural-nested modeling [22–30]. 

Although much attention has been paid to instrumental variables estimation with two-armed trials, we 
found very few examples of analyses with three-armed trials. We found two examples in which the inves- 
tigators made use of the principal stratification framework [19, 20], but our application has an even more 
complex structure that lends itself better to a structural-nested modeling approach. The principal strati- 
fication approach encounters the difficulty that as the numbers of randomized treatments and adherence 
categories increase, even more so do the number of principal strata, leading either to nonidentifiability 
of parameters or to the need for a complex network of modeling assumptions. For comparison, we also 
apply an approach based on regression with an endogenous variable. Structural-nested models (SNMs) 
were introduced by Robins [22, 23] and further developed for binary and more general outcomes by 
Vansteelandt and Goetghebeur [25]. Korhonen, Laird, and Palmgren [26] developed and applied SNMs 
for time-to-event outcomes. Hernan and Robins [24] provided an accessible introduction, and the models 
have proven to be useful for adjusting estimated causal effects of adherence for unmeasured confound- 
ing [25–29]. SNMs provide estimates of the effect of observed adherence versus a reference level of 
adherence, conditional on the observed adherence level (sometimes referred to in simple settings as the 
effect of treatment on the treated). Vansteelandt et al. [30] recently offered a review of the use of SNMs 
with binary outcomes and pointed out that, in some instances, the estimating equation has no solution. 

An additional complication of our application is that the study design utilized unequal probabilities 
of selecting individuals. We did not find any examples in the literature of applying SNMs with cluster- 
randomized trials or with sampling weights. One of the additional problems we encounter in this setting 
is the need to adjust for measured individual-level confounders of the effect of randomization on the 
outcome. We borrowed an idea from Cain et al. [31] in a simpler setting: they used weighting to adjust 
for the individual-level confounders, followed by weighted estimation with the instrumental variable. 
We thus treat this problem by weighting the sampled data with a product of two component weights: 
the first weight adjusts the sample so that individuals have equal probability of selection, and the second 
weight further adjusts it by removing the association between individual level confounders and ran- 
domization. Then we apply Newton’s method for estimating the parameters of a weighted generalized 
structural-nested mean model, using an easily programmed algorithm. The sampling distribution can 
be approximated using survey standard errors via either the bootstrap or jackknife for complex survey 
data [32–35] or a sandwich estimator for complex survey data [32-33,36]. On the basis of our literature 
search, we believe that our methodology for a cluster-randomized trial with a complex sampling design, 
our simple method of computation, and our use of the jackknife are new developments in the method- 
ology and application of SNMs. Furthermore, we apply and compare three different structural-nested 
modeling approaches with estimating causal relative risks with the school-based WASH data—the first 
based on a linear SNM, the second on a logistic SNM, and the third based on a loglinear SNM. We are 
unaware of previous attempts to compare the three approaches in terms of a common estimand. 

The paper is organized as follows. In the next section, we introduce the school-based WASH interven- 
tion study. In Section 3, we explain the endogenous regressor framework. In Section 4, we present our 
method of estimation with weighted generalized structural-nested mean models, including our simple 
method of computation. In Section 5, we conduct a simulation study of the method to show that it is gen- 
erally quite robust. In Section 6, we apply the method to the school-based WASH trial, and in Section 7, 
we conclude with a discussion. 

2. The school-based water, sanitation, and hygiene intervention study

The school-based WASH intervention randomized public primary schools nested in three geographical 
strata to one of the three study arms: water treatment and hygiene (hand-washing) promotion (WH), 
additional sanitation improvement that included latrine construction (WH C S), or control. We assessed 
pupil absence at follow-up on a subset of pupils within each school. Because pupils were selected into the 
study with unequal probabilities, sampling weights needed to be incorporated into the analysis. Results 
of the intent-to-treat analysis presented in Freeman et al. [1] suggested that the school-based WASH 
components can improve school attendance, particularly for girls; therefore, in the present paper, we 
focus only on girls. Like Freeman et al. [1], we will also restrict our attention to two geographical 
strata (Rachuonyo and Suba). The third (Nyando/Kisumu) stratum experienced unusually low absence 
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at follow-up in all three arms, possibly because of political reasons, and thus because of effect-measure 
modification that needs to be analyzed separately. 

As with many such studies, adherence at schools to the randomly assigned intervention components 
was far from perfect. The program did not achieve adherence for one or more of the three supplied 
components (W, H, or S) in many intervention schools, and fortunately, some control schools provided 
one or more of those components independent of program activity. For the purpose of analysis, we 
dichotomized the measure of adherence for each of the three components as adequate or not; therefore, 
overall adherence has eight levels. Ideally, we would be able to estimate the causal effects of seven of 
these levels versus the reference category of no W, no H, and no S. If there were no confounding, sim- 
ple comparisons would be sufficient; if all confounders were measured, we could adjust the comparisons 
using logistic regression for complex survey data. However, one of the advantages of a randomized study 
is that randomized assignment can be used as an instrumental variable [3], provided certain assumptions 
hold, and thereby, we can also adjust for unmeasured confounders. However, as the school-based WASH 
trial only had three randomization arms, we are restricted by most instrumental variables methods either 
to making just two comparisons versus the reference category or to reducing the dimension of estimated 
parameters down to three in some other way, for example, by assuming that the comparisons are linearly 
related on the logit scale. 

The next two sections present the statistical methods we used to analyze the school-based WASH 
intervention study. First, we considered the endogenous regression framework, and then we turned 
to SNMs. 

3. Estimation within the endogenous regressor framework

In this section, we present how to use the endogenous regressor framework to adjust for unmeasured 
confounding of the effect of adherence in the context of a cluster-randomized trial. We let Zi be a multi- 
nomial random variable denoting the randomized treatment arm, which will serve as an instrumental 
variable [3] in our analysis. For ease of exposition, in this section, we assume that we have obtained a 
simple random sample of individuals from a population in which students are randomly assigned to clus- 
ters, and then we randomized clusters to the intervention groups. Let Yij be the outcome for individual 
j in cluster i , and let Ai denote the adherence of cluster i , with reference level Ai D 0. 

Using the endogenous regressor framework, one posits a regression representing the effect of Ai  on 
Yij , such as 

Yij D ̨  C Avi � C Eij (1) 

where E.Eij / D 0 and Avi is a vector function of Ai (perhaps denoting dummy variables, e.g. when Ai is 
multinomial) that equals zero when Ai D 0. The variable Avi is then specified as an endogenous regres- 
sor because it is correlated with Eij , because of unmeasured confounding. Finally, one assumes that the 
instrumental variable Zi is independent of Eij , because of randomization. Let Zvi be a vector function 
of Zi , which includes the intercept. The preceding assumptions imply that the estimating equation 

†i †j ZT    Yij - Avi � - ̨  D 0 (2) 

is unbiased (i.e., the left hand side has mean zero) and, therefore, that when it can be solved uniquely for 
� and ˛, the effect of Ai on Yij can be estimated consistently. 

To interpret � causally and precisely, a potential outcome framework is helpful. We assume that the 
potential outcomes Yij .a; ´/ to randomization with Zi D ´ and subsequent adherence Ai D a are well 
defined for each participant and do not depend on ´, so that Yij .a; ´/ D Yij .a/. We further assume that 
they satisfy the consistency assumption, Yij .a/ D Yij .Ai / D Yij , when Ai is observed to equal a. 
Probably the most natural interpretation of � stems from an implicit formulation of the marginal 
structural model (MSM) [37] 

E.Yij .a// D ̨  C av � (3) 

where av relates to a just as Avi relates to Ai . When Yij  is binary, av � D E  Yij .a/ - Yij .0/  represents 
the causal effect of adherence at level a relative to the reference level in terms of a risk difference. 

We next seek to determine conditions under which estimating equation (2) is an unbiased estimating 
equation for � . Let Eij .a/ D Yij .a/ - av � - ̨  and observe that Eij  D Eij .Ai /. Because we assume 
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that the potential outcomes exist at baseline, our study design implies that Eij .a/ q Zi for all a (where 
q denotes independence). However, because it depends on Ai , Eij is not generally independent of Zi , 
unless Eij .a/ is constant in a (which implies a constant effect of adherence across individuals, i.e., no 
effect modifiers). Thus, if Eij .a/ is not constant in a, then a major assumption required by the endoge- 
nous regressor framework is violated, and in turn, equation (2) may be biased. With binary outcomes, 
requiring Eij .a/ to be constant in a equivalently constrains the causal risk differences to equal -1,0, or 
1. Even with continuous outcomes, the assumption is implausible. Therefore, interpretation of � in terms
of model (3) may be problematic. 

However, if we weaken the requirement that Eij q Zi , and assume only that E ZT Eij  D 0, equation 
(2) is trivially unbiased. But this latter assumption is not implied by randomization and the MSM at (3); 
it needs further justification. Indeed, not even E.Eij / D 0 is implied by randomization and the MSM. In 
Appendix 7, we present a simple example for which the assumptions of randomization and the MSM are 
satisfied, but for which E.Eij / ¤ 0 and E.Zi Eij / ¤ 0. By attempting to construct examples, one comes 
to appreciate that the assumption E ZT Eij  D 0 is difficult to comprehend. 

One can, however, find alternative causal interpretations of the probability limit of the solution to the 
instrumental variables (IV) estimating equation (2) on the basis of other assumptions. For a relatively 
simple adherence structure, principal stratification leads to one type of interpretation. SNMs, which we 
develop in Section 4, are readily applied to more complex adherence structures and lead to another type 
of interpretation. 

Problems with the endogenous regressor framework have surfaced repeatedly in the literature. Angrist, 
Imbens, and Rubin [11] noted ambiguity of the interpretation of Eij in the endogenous regressor frame- 
work, but they did not formalize the consequences. Bang and Davis [38] observed bias in the IV 
estimating equation for estimating the � of (3), but they did not attempt to understand the cause of that 
bias. It is not difficult to find examples in the literature where researchers working within the endogenous 
regressor framework either are vague about the interpretation of the instrumental variables analysis or do 
not justify the assumption that E ZT Eij D 0 using potential outcomes, or both [3–8]. We also found 
examples where researchers are using potential outcomes to interpret their estimates but nevertheless 
effectively assume that Eij .a/ or a related latent variable is constant in a [9, 39, 40]. 

4. Estimation with weighted generalized structural-nested mean models

An alternative framework for using an instrumental variable to adjust for unmeasured confounders is 
based on an SNM. The structural-nested mean model incorporates the same potential outcomes intro- 
duced in the previous section. In this section, we also address the additional complications introduced 
by the complex sampling design of the cluster-randomized trial. Because of the randomization of clus- 
ters rather than individuals, Zi is not necessarily independent of individual-level covariates. Suppose 
we could have randomized all clusters in the population and observed both cluster-level adherence and 
individual-level outcomes, so that Zi , Ai , a set of measured individual-level covariates Xij , and the 
potential outcomes Yij .a/ for all a are defined for all individuals in the population. Besides the assump- 
tions that the potential outcomes are well-defined at baseline and that Yij .A/ D Yij , our methodology 
requires two additional assumptions. The first is as follows. 

Assumption 1 
Conditional  on  Xij ,  the  population  distribution  of  Yij .0/  does  not  depend  on  Zi ;  that  is, 
P p Yij .0/jZi ; Xij D P p Yij .0/jXi , where P p .V / is the probability that V equals its observed 
value on the basis of the distribution of the population data. 

Let Wij1 D P p .Zi /=P p Zi jXij . Define P W1 .Yij .0/; Zi ; Xij / - P p Yij .0/; Zi ; Xij Wij1; by 
Assumption 1, P W1 .Yij .0/; Zi ; Xij / D P p .Yij .0/; Xij /P p .Zi /. This weighted distribution reflects the 
distribution of the population data we would have observed if we could have randomized schools so 
that the distribution of Xij was the same at each level of Zi (e.g., by paired matching or frequency 
matching [41] of schools); note that for this distribution, Yij .0/ q Zi . Thus, Assumption 1 implies that 
EW1 Yij .0/jZi D EW1 Yij .0/  D Ep  Yij .0/ , where EW1 .V jC/ is the conditional expectation of V 
given C with respect to the weighted distribution P W1 .V jC/ and Ep .V / is the expectation of V with 
respect to the population distribution P p .V /. 

Next, let  P W1    Yij .0/; Yij .1/; Yij .2/; Zi ; Ai ; Xij     - P p   Yij .0/; Yij .1/; Yij .2/; Zi ; Ai ; Xij   Wij1. 
Our second assumption is as follows. 
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Assumption 2 

h 
˚
EW1   Yij .a/jAi D a; Zi      D  h 

˚
EW1   Yij .0/jAi D a; Zi     C av �, where av  was defined in the 

previous section and h.·/ is a canonical link corresponding to a generalized linear model [42], such 
as h.p/ D log .p=.1 - p//, h.p/ D log.p/, or h.p/ D p. 

Assumption 2 states that the distribution of potential outcomes in the population satisfies a weighted 
generalized structural-nested mean model. It also implies that an unweighted structural-nested mean 
model of the same form holds for the counterfactual population data obtained by randomizing clusters 
so that the distribution of Xij is the same at each level of Zi . When h.p/ D p, av � represents a risk dif- 
ference, for h.p/ D log.p/, a log relative risk, and for h.p/ D log.p=.1-p//, a log odds ratio. Our focus, 
however, is on estimating the relative risks RR.a/  D  EW1  Yij .a/jAi D a  =EW1  Yij .0/jAi D a

 

for all a, which represent the effects of cluster-level adherence levels unconditionally on Zi , had we 
randomized the clusters so that the distribution of Xij was the same at each level of Zi . 

Let Wij 2 be the inverse probability that individual j from cluster i was selected into the actual 
study. Wij 2 may not be constant across individuals because, first, the chance that a cluster is selected 
into the study may vary, and, second, the chance that an individual within a cluster was selected 
for observation may also vary. Let Wij D Wij1Wij 2. Let µ.Ai ; Zi I ry/ be a parametric model for 
EW1 .Yij jAi ; Zi / with parameter ry. When Ai  is multinomial, one could use the saturated model 
µ.Ai ; Zi I ry/ D g.Avi ry1 CZvi ry2 CAi *Zi ry3/, where Avi and Zvi were defined in the preceding section 
and Ai * Zi represents a multidimensional interaction that saturates the model. In our application, we 
will use this saturated model. Let DT be a function of Ai and Zi ; we will let Di - .Avi ; Zvi ; Ai *Zi /T . 
Under Assumptions 1 and 2, and assuming µ.Ai ; Zi I ry/ is correctly specified, we can consistently 
estimate .�; ry/ by solving the estimating equations 

†i †j Wij ZT r
h-1 fh .µ.Ai ; Zi I ry// - Avi �g - ̨

l 
D 0 

vi 

†i †j Wij DT ˚Yij - µ .Ai ; Zi I ry/  D 0
(4) 

for .�; ry; ̨ /. The first estimating equation is unbiased conditional on Zi , because 

EW1
Ai jZi

h-1 rh 
˚
EW1  Yij jAi ; Zi - Avi �

l 
D EW1  Yij .0/jZi D EW1  Yij .0/ - ˛ 

where the first equality follows from Assumption 2, and the second equality from Assumption 1 (and 
note that we substituted EW1  Yij jAi ; Zi in place of µ.Ai ; Zi ; I ry/). The second equation is unbiased 
conditional on Ai and Zi provided µ.Ai ; Zi I ry/ is correctly specified; if one uses a saturated model, 
this is automatic. In both cases, observe that if we had data from the entire population available, the 
equations would be unbiased with Wij1 in place of Wij . However, because of the complex sampling 
design, we need to use Wij . With the resulting estimates �O and ryO, one can use the model of Assumption 2 
and µ .Ai ; Zi I ryO / to solve for EW1 Yij .0/jAi D a; Zi , and consequently for EW1 Yij .0/jAi D a (by 
averaging with respect to the weighted distribution of Zi given Ai ) and RR.a/. 

If we use a generalized linear model for µ .Ai ; Zi ; I ry/ with a canonical link function g-1.·/, the 
second equation can be solved using weighted generalized linear model software (e.g. PROC GLM in 
SAS). If we furthermore let h.·/ D g-1.·/ and substitute ryO for ry into the first equation, it reduces to 

†i †j Wij ZT fg .Di ryO - Avi � / - ̨g D 0 (5) 

which can be solved iteratively using Newton’s method by linearizing g .Di ryO - Avi � / about a cur- 
rent estimate of � and then solving a weighted version of equation (2) using weighted instrumental 
variables software (e.g. PROC SYSLIN in SAS). For example, with g.x/ - exp.x/=.1 C exp.x//, 
and � t  the current estimate of � , we linearly approximate g .Di ryO - Avi � / as Y * - A* � , where* t t * i vi t *    t 
Avi - Avi g Di ryO - Avi

� 
1 - g Di ryO - Avi

� 
and Yi   - g Di ryi - Avi � C Avi �  . Then we 

solve the equation 

†i †j Wij ZT   Y * - A* � - ̨  D 0 (6) 
vi i vi 

to find the next estimate � t C1 of �. Equation (6) can be solved using weighted instrumental variables 
software, with Y * as the outcome, A* as the endogenous regressor, Zvi as the instrument, and Wij as 

i vi 
the weights. 
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If instead of specifying h.p/ as log .p=.1 - p//, we let h.p/ D p in Assumption 2 (and we 
let g.x/ D x), the second equation can be solved using weighted linear regression, and the first 
equation becomes 

†i †j Wij ZT .Di ryO - Avi � - ̨ / D 0 (7) 

which can be solved without iteration using weighted instrumental variables software, with Di ryO as the 
outcome, Avi as the endogenous regressor, Zvi as the instrument, and Wij as the weights. We note that 
the resulting estimators of � and ˛ are identical to the solutions to the weighted version of equation (2), 
that is, to 

†i †j Wij ZT  Yij - Avi � - ̨  D 0 

However, the interpretation of � and ˛ and the underlying assumptions required for that inter- 
pretation differ markedly from the weighted structural-nested modeling framework to the weighted 
endogenous regression framework. In the former framework, we require Assumptions 1 and 2, and 
av � D EW1 Yij .a/ - Yij .0/jAi D a is a risk difference conditional on Ai D a. In the latter frame- 
work, av � D EW1   Yij .a/ - Yij .0/  is an unconditional risk difference, and we require the Assumption 
1 as well as the opaque assumption that EW1   Zvi Eij   D 0. Although much less opaque, Assumption 
2 within the structural-nested modeling framework may not be plausible. It requires us to believe that 
EW1 Yij .a/ - Yij .0/jAi D a; Zi does not depend on Zi . Even if we did not have all of the compli- 
cations of a cluster-randomized trial with a complex sampling design, but instead were working with a 
simpler design .so that W1 was constant/, any baseline covariate Vij may have a different distribution 
conditional on Ai D a and Zi D ´1 than conditional on Ai D a and Zi D ´2. Consider Vij to be 
gender, for example, in the context of the school-based WASH study. There may be proportionally more 
girls in the schools with adherence at level (1) in the control group than there are in the schools with 
adherence at level (1) in the WH group. In this case, Assumption 2 would require us to believe that 
even though gender is imbalanced across those two groups, the effect of adherence at level (1) versus 
level (0) within those two groups would be the same. If gender was not an effect-modifier, this would be 
plausible. But because the intent-to-treat analysis in Freeman et al. [1] suggested that gender is an effect- 
modifier, in Section 6, we analyze the school-based WASH data for girls only (observing that nothing in 
our methods development precluded us from working entirely within a subpopulation defined by base- 
line covariates.) However, we must hope that there is not another imbalance of baseline covariates that 
renders Assumption 2 implausible. We note that in much less complex applications, for example, those 
in which there is randomization to a placebo or active treatment, such that adherence is binary, and no 
one in the placebo group has access to the active treatment, Assumption 2 is tautologous. 

We have observed in practice that if Assumption 2 does not fit the data, estimation can be prob- 
lematic. One reason Assumption 2 may be incorrect is an improper choice of h.·/. When h.p/ D p 
and Yi is binary, we have observed that the estimated E Yij .0/jAi D a may fall outside the range of 
Œ0; 1], sometimes entailing estimated risk differences outside the possible range of Œ-1; 1]. The exam- 
ple in Appendix 7 illustrates this problem. For the observed data in that example (with any choice of 
n, e.g., n D 500), the estimated E Yij .0/jAi D 1 D -0:25 when we assume h.p/ D p. The esti- 
mated E.Yij jAi D 1/ D 0:25, and so the estimated risk difference is 0.5, but it is meaningless because 
of the negativity of E.Yij .0/jAi D 1/. For the counterfactual data in that example, we verified that 
Assumption 2 is incorrect for all three choices of h.·/, by calculating (i) E.Yij - Yij .0/jAi  D 1; Zi D 
0/ D -0:56, whereas E.Yij - Yij .0/jAi  D 1; Zi  D 1/ D -0:35; (ii) log

˚
E.Yij jAi D 1; Zi D 0/   - 

log 
˚
E.Yij .0/jAi D 1; Zi D 0/   D -1:50, whereas log 

˚
E  Yij jAi D 1; Zi D 1    - logfE.Yij .0/jAi D 

1; Zi D 1/g D -0:74; and (iii) logitfE.Yij jAi D 1; Zi D 0/g - logitfE.Yij .0/jAi D 1; Zi D 0/g D 
-2:60, whereas logit 

˚
E.Yij jAi D 1; Zi D 1/  - logit 

˚
E.Yij .0/jAi D 1; Zi D 1/   D -1:48. 

An interesting next question is  whether  there  is  any  choice  of  h.·/  that  renders  Assump- 
tion  2  correct  for  the  counterfactual  plus  observed  data  in  Appendix  7.  To  answer  this  ques- 
tion, we calculated h 

˚
E.Yij jAi D 1; Zi D 0/    D  0:16, h 

˚
E.Yij .0/jAi D 1; Zi D 0/    D  0:72, 

h 
˚
E.Yij jAi D 1; Zi D 1/  D 0:3226, and h 

˚
E.Yij .0/jAi D 1; Zi D 1/  D 0:6774. Choosing h.·/ to 

make Assumption 2 correct would require h.:16/ - h.:72/ D h.:3226/ - h.:6774/, which is impossible 
if h.·/ is monotonic and increasing, as are canonical link functions. This leads to one final question, 
which is whether there is any choice of h.·/ in Assumption 2 that fits the observed data in Appendix 
7. We have already determined that h.p/ D p does not fit the observed data, because the result-
ing estimate E  Yij .0/jAi D a  is out of range. However, we found that both h.p/ D log.p/ and 



hD1 
Ch Uhc

cD1 

hD1 
Ch 

-1 

h.p/ D log fp=.1 - p/g fit the observed data, with estimated E.Yij .0/jAi D 1/ D 0:1250 and 0:1124,
respectively. This highlights the predominantly untestable nature of Assumption 2. If the estimated value 
for E.Yij .0/jAi D 1/ falls outside the range of Œ0; 1], then we will doubt Assumption 2, although it could 
be that Assumption 2 holds but the data set is an outlying one (more on this in Section 4.) However, if 
the estimated value for E.Yij .0/jAi D 1/ is inside Œ0; 1], then Assumption 2 may be true or it may be 
false, as we have just seen. 

For the observed data reported in Appendix 7, when h.p/ D log.p/ is selected, the iterative algorithm 
fails to converge, and a grid search confirms that there is no solution to the estimating equations. For that 
same data set, setting h.p/ D p leads to an estimated E Yij .0/jAi D a of 2:33 and an estimated causal 
risk difference of -1:83, which is outside the possible range. Setting h.p/ D logfp=.1 - p/g leads to an 
estimated E Yij .0/jAi D a of 0:93; as E Yij jAi D a is estimated at 0:5, this leads to an estimated 
causal relative risk of 0:54. 

When h.p/ D log fp=.1 - p/g, we have also observed that the iterative algorithm may fail to con- 
verge, again because there is no solution to the estimating equations at (4). We observed this as part of 
the simulation study reported in Section 5. Data that caused this to happen are reported in Appendix 7. 

Constructing confidence intervals 

The estimating equations at (4) are of the form U.()/ D †H †Ch Uhc .() / D 0, where () is a vector
of parameters, c indexes primary sampling units (PSUs; hD

t
1 cD1 and h indexes the primary 

e.g., he schools),
strata. Uhc .() / is a sum of weighted estimating equations, with the weighted components each having 
an expected value of zero unconditionally, but not conditionally upon stratum h. Thus, Uhc .() / does not 
generally have a zero expectation. The parameter () characterizes a superpopulation consisting of an infi- 
nite number of groups within the primary strata. One can use a sandwich estimator of variance for the 
()O , which solves U.() / D 0. The sandwich estimator is based on a Taylor series linearization [32, 33, 36] 
and has the form 

vOar ()O   D 
n

rU ()O  
o 

V 
 

()O
   n

rU ()O  T
o-1

(8) 

where rU.()/ is the gradient of U.()/ with respect to () , and 

V  ()O  D †H fCh=.Ch - 1/g †cD1

n
Uhc ()O - Uh: ()O

o n
 ()O

  
- Uh:  ()O

 o (9) 

where Uh: ()O  D .1=Ch/ †Ch Uhc  ()O  . By the law of large numbers and the central limit theorem, ()O is
approximately distributed as multivariate normal with mean () and variance vOar ()O  . 

Unfortunately, even though our estimate of ()O is easy to program, the sandwich estimator of variance 
is not. An alternative estimator of vOar ()O  that is much easier to program is the bootstrap or jackknife for 
complex survey data [32–35]. The bootstrap resamples PSUs within each stratum with replacement and 
reestimates. Let ()O b  be an estimate of () based on the data from the bth bootstrap sample, then 

vOarB ()O   D f1=.B - 1/g†B
h

()O b - 
n

.1=B/†B

() b 
oi2 (10) 

bD1 bD1 
O 

where B is the total number of bootstrap samples, is the bootstrap estimator of variance, which can be 
used with a normal approximation to produce confidence intervals. For estimating confidence intervals 
for functions r.() / of () such as relative risks, we use the normal approximation to the log of r  ()O   . 

Unfortunately, in practice, we found the bootstrap to readily generate samples for which the logistic 
SNM did not fit, in the sense that the estimating equation had no solution. We therefore turned instead to 
the jackknife. Let ()O hc be an estimate of () based on deleting the cth PSU within stratum h. The jackknife 
estimator of variance we used is 

vOarJ  ()O    D †H f.Ch - 1/=Chg†cD1

hc 
˚2

()O - ()O (11) 

Again, for estimating confidence intervals for functions r.()/ of ()  such as relative risks, we use the 
normal approximation to the log of r ()O  . 

T 



5. Simulation study

We conducted two sets of simulations, the first based on a logistic SNM, with h.p/ D log.p=.1 - p// in 
Assumption 2 and the second based on a loglinear SNM, with h.p/ D log.p/ in Assumption 2. For each 
set of simulations, we simulated data sets with 400 observations that satisfied Assumptions 1 and 2. Our 
aim was to investigate bias of the estimators of RR.a/ as well as of the jackknife estimator of variance of 
those estimators. For both sets of simulations, we let Zi D 0; 1; or 2 with equal probability. Then we gen- 
erated Ai dependent on Zi as follows. We let Ai D 0; 1; 2 with probabilities 3=4; 1=8; 1=8 when Zi D 0, 
probabilities 1=8; 3=4; 1=8 when Zi D 1, and probabilities 1=8; 1=8; 3=4 when Zi D 2. We assumed 
an unclustered design with simple random sampling, and we generated Yi .0/ according to P .Yi .0/ D 
1jAi ; Zi / as specified in Table I. For that distribution, P .Yi .0/jZi / D 0:22/, so that Yi .0/ q Zi and 
Assumption 1 is satisfied. We then generated Yi according to either the logistic or loglinear SNM, satis- 
fying Assumption 2. For the logistic SNM, we let logit.E.Yi jAi D a; Zi //-logit.E.Yi .0/jAi D a; Zi // 
equal log.2/ for a D 1 and 2 log.2/ for a D 2. We presented the resulting probabilities P .Yi D 1jAi ; Zi / 
used to generate the observed data in Table I as P 1.Yi .a/ D 1jAi D a; Zi /. For the loglinear SNM, we 
let log.E.Yi jAi D a; Zi // - log.E.Yi .0/jAi D a; Zi // equal log.1:5/ for a D 1 and log.2/ for a D 2. 
We presented the resulting probabilities P .Yi D 1jAi ; Zi / in Table I as P 2.Yi .a/ D 1jAi D a; Zi /. 

For both SNMs, we calculated E.Yi .0/jAi D 1/ D 0:2125 and E.Yi .0/jAi D 2/ D 0:2333. For the 
logistic SNM, we further calculated E.Yi jAi D 1/ D 0:35 and E.Yi jAi D 2/ D 0:5417. Therefore, 
RR.1/ D 1:647 and RR.2/ D 2:321, so that log.RR.1// D 0:499 and log.RR.2// D 0:842. For the 
loglinear SNM, we further calculated E.Yi jAi D 1/ D 0:3188 and E.Yi jAi D 2/ D 0:4667. Therefore, 
RR.1/ D 1:5 and RR.2/ D 2, so that log.RR.1// D 0:405 and log.RR.2// D 0:693. 

We used equation (4) with h.p/ D g-1.p/ for estimation with the easily programmed iterative algo- 
rithm, where we set h.p/ D logit.p/ for the logistic SNM simulation and h.p/ D log.p/ for the loglinear 
SNM simulation. Note that the weights Wi in estimating equation (4) can be set equal to one for this 
simulation. We then estimated RR.1/ and RR.2/ as well as the jackknife estimator of variance of those 
estimators, as described in Section 3. 

We found that, rarely, the logistic SNM simulation would generate a data set for which there is no 
solution to estimating equation (4)—we double checked this with a grid search. We simulated until three 
such data sets were generated. Those data sets were generated at the 734th, 2481st, and 2563rd simula- 
tion. Appendix 7 presents the three data sets as well as the expected data set under the model. We observe 
that the departures of the observed frequencies from the expected frequencies are not that drastic, which 
surprised us. Using the negative binomial distribution, we estimated the probability of a data set with no 
solution to the estimating equation at 0.12%. 

To assess the bias of our estimating procedure, we simulated 1000 data sets. For the logistic SNM, 
one of the data sets led to an estimating equation with no solution. For the remaining 999 data sets, we 
estimated log.RR.1// at 0.534 with a standard error of 0.013 and log.RR.2// at 0.874 with a standard 
error of 0.013. For the loglinear SNM, none of the 1000 data sets led to an estimating equation with 

Table I. Specification of probability distributions for the simulation 
study of Section 4.

Zi D 0 Zi D 1 Zi D 2 
Ai D 0 P.Yi .0/ D 1jAi D 0; Zi / 1/5 1/4 1/3

Ai D 1 P.Yi .0/ D 1jAi D 1; Zi / 1/4 1/5 1/4 
P 1.Yi .1/ D 1jAi D 1; Zi / 2/5 1/3 2/5 
P 2.Yi .1/ D 1jAi D 1; Zi / 3/8 3/10 3/8 

Ai D 2 P.Yi .0/ D 1jAi D 2; Zi / 1/3 1/3 1/5 
P 1.Yi .2/ D 1jAi D 2; Zi / 2/3 2/3 1/2 
P 2.Yi .2/ D 1jAi D 2; Zi / 2/3 2/3 2/5 

The distribution of P.Yi .0/ D 1jAi D a; Zi / is identical for the logistic and 
the loglinear SNM simulations. 
The distribution of the observed data P.Yi .a/ D 1jAi D a; Zi / is given as 
P 1.Yi .a/ D 1jAi D a; Zi / for the logistic SNM and as P 2.Yi .a/ D 1jAi D 
a; Zi / for the loglinear SNM. 



no solution. We estimated log.RR.1// at 0.420 with a standard error of 0.013 and log.RR.2// at 0.731 
with a standard error of 0.014. Comparing these values with the truth given earlier, we observe that our 
estimators are biased slightly high because of the finite sample size. 

To study the performance of the jackknife, we simulated 500 data sets as discussed earlier and com- 
puted the jackknife confidence intervals for each one. We found that a 95% confidence interval for the 
coverage for RR.1/ was 94:2 ̇  2:0% for the logistic SNM and 98:4 ̇  1:1% for the loglinear SNM. 
The coverage for RR.2/ was 95:6 ̇  1:8% for the logistic SNM and 94:4 ̇  2:0% for the loglinear SNM. 
Thus, the jackknife performs well. 

6. Analysis of the school-based water, sanitation, and hygiene intervention

For the school-based WASH analysis, we defined adherence Ai as an ordinal variable representing three 
levels. Specifically, we defined reference level (0) as inadequate degrees of water treatment, hygiene 
promotion, or sanitation improvement; level (1) as an adequate degree of exactly one of those three 
components; and level (2) as an adequate degree of two or more of those components. We were inter- 
ested in the effect of adherence on school absence; we let Yij  indicate the absence outcome. We needed 
to adjust for individual-level confounding by grade level Xij ; to do so, we estimated 1=Wij1 using a 
baseline category logit model [43]. The inverse probabilities of selection into the study represent Wij 2. 
Table II summarizes the observed data for the study. The final column represents the weighted relative 
frequency of the row, using Wij D Wij1Wij 2  as the weight. Table III summarizes the observed number 
of schools in each intervention and adherence category. 

We used linear, logistic, and loglinear SNMs to analyze the effect of intervention adherence on 
absenteeism for the school-based WASH trial. Validity of our analysis requires Assumptions 1 and 
2; we furthermore assumed h.p/ D g-1.p/, so that we could use the simple method of comput- 
ing. Our colleagues were most interested in RR.1/ D EW1   Yij jAi D 1 =EW1   Yij .0/jAi D 1  and 

Table II. Summary of the school-based WASH study data. 
Yij Ai Zi WRF 
0 0 Control 0.1817
1 0 Control 0.0738 
0 0 WH 0.0185
1 0 WH 0.0050 
0 0 WHCS 0.0142
1 0 WHCS 0.0013 
0 1 Control 0.0632 
1 1 Control 0.0147 
0 1 WH 0.1289
1 1 WH 0.0325 
0 1 WHCS 0.0473
1 1 WHCS 0.0129 
0 2 Control 0 
1 2 Control 0 
0 2 WH 0.1309
1 2 WH 0.0175 
0 2 WHCS 0.2025
1 2 WHCS 0.0552 

Yij indicates absence of student j in school i ; Ai denotes adher- 
ence level (0,1, or 2); Zi denotes randomization level (control, 
WH, or WHCS); WRF denotes the weighted relative frequency 
of the row, using the final weight, which is the product of the 
confounding adjustment weight and the sampling weight. 



Table III. The observed number of schools in each 
intervention (Zi ) and adherence (Ai ) category in the 
school-based WASH study.

Ai D 0 Ai D 1 Ai D 2 
Zi D Control 22 6 0
Zi D WH  3 14 12 
Zi D WH C S 2 5 22 

Table IV. Estimated relative risks RR.1/ and RR.2/ and 
95% confidence intervals using the linear, logistic, and 
loglinear SNM approaches.

Approach RR.1/ RR.2/ 
Linear 0.45 (0.42, 0.49) 0.66 (0.63, 0.70)
Logistic 0.41 (0.19, 0.89) 0.69 (0.32, 1.51) 
Loglinear 0.40 (0.36, 0.44) 0.72 (0.67, 0.77) 

RR.2/ D EW1 Yij jAi D 2 =EW1 .Yij .0/jAi D 2/. In words, RR.a/ measures the effect of school- 
level adherence at level a versus level 0 on individual-level absence in terms of a relative risk, among 
schools observed to have adherence at level a. Table IV presents estimates and 95% confidence inter- 
vals on the basis of the jackknife. For the logistic SNM, we also derived and programmed the sandwich 
estimator of the 95% confidence interval, which was (0.19, 0.86) for RR.1/ and (0.41, 1.17) for RR.2/, 
similar to the jackknife estimates. In Table IV, we observe that the logistic SNM leads to very wide 
confidence intervals as compared with the loglinear or linear SNMs. However, all three methods yield 
similar point estimates. Our colleagues hypothesized that increased adherence to intervention compo- 
nents would reduce absenteeism, and we observed this to be the case. The relative risk is further away 
from one for the Ai D 1 group than it is for the Ai D 2 group, but this is due to the different estimates of 
EW1 .Yij .0/jAi D a/. For example, for the logistic SNM, the estimate for a D 1 was 0.49, whereas that 
for a D 2 was 0.26. Therefore, more reduction in risk of absenteeism was possible in the schools with 
Ai D 1, and more reduction was achieved. 

For completeness, we also applied the endogenous regressor approach. For this, we estimated 
RD.1/ D EW1 .Yij .1/ - Yij .0// at -0:24 with a 95% confidence interval of (-0:21; -0:27), and 
RD.2/ D EW1 .Yij .2/ - Yij .0// at -0:09 with a 95% confidence interval of (-0:08; -0:10). We 
estimated EW1 .Yij .0// at 0:32. Qualitatively, the results agree with the linear and loglinear SNM 
approaches, and quantitatively, the unconditional risk differences for the endogenous regressor approach 
agree identically with the conditional risk differences EW1 Yij .a/ - Yij .0/jAi D a we computed for 
the linear SNM. However, the estimated expected value of Yij .0/ is very different for the endogenous 
regressor approach; particularly as for it, we are estimating an unconditional expectation, whereas for 
the SNM approaches, we are estimating a conditional expectation. 

7. Discussion

We have developed methods and software on the basis of SNMs for the analysis of multi-armed cluster- 
randomized trials with unequal probabilities of sampling individuals. We have applied the methods to 
analyze the effect of adherence in the school-based WASH study. In the process, we reviewed the rele- 
vant literature and critiqued the endogenous regression framework. We developed and applied weighted 
generalized SNMs to implement our analysis. We showed that computation is straightforward using 
an iterative application of weighted instrumental variable software and a jackknife method of variance 
estimation. Software in SAS is available upon request. 

In our investigation, we learned that none of the methods for analyzing the effect of adherence is ideal. 
With the endogenous framework, one needs to assume that either no effect modifiers exist or an opaque 
assumption holds. With the principal stratification framework, there are too many principal strata in our 
application. With the SNM framework, one needs to assume no effect modification in a weak sense, but 
still that may be undesirable. We explained that if effect modifiers are thought to be present, we can 



stratify on them, as we did with gender. Another option is to incorporate them as continuous covari- 
ates into the SNM—see the Appendix of Hernan and Robins [24]—but that might lead to even more 
difficulties in terms of non-existent solutions to the SNM estimating equation. 

Our simulation study validated our methodology, but it also demonstrated that for certain data sets, the 
estimating equation has no solution. This is a problem that deserves further study, for two reasons. First, 
perhaps one could predict from the data set whether the estimating equation has no solution, before 
applying the algorithm. Second, one might try to adapt the methodology so that an estimate could be 
obtained for any data set. 

Appendix A 

An example, including observed data Zi ; Ai ; Yij as well as counterfactual data and error terms, which 
satisfies the marginal structural model and randomization assumptions but not the endogenous regressor 
assumptions. One can calculate E.Eij / D E Eij .Ai / D -0:138 ¤ 0 and E Zi Eij D -0:048 ¤ 0. In 
this example, E Yij .1/ - Yij .0/ D 0:6 - 0:4 D 0:2. Randomization holds, in that E.Zi / D 0:5 and 
E Eij .0/ D E.Eij .1// D 0. The last column represents the frequency of the row divided by the total 
sample size, n. 

Zi Ai Yij .0/ Yij .1/ Yij Eij .0/ Eij .1/ Eij .Ai / freq/n 
0 0 0 0 0 -0:6 -0:4 -0:6 0.05 
0 0 0 1 0 -0:6 0.6 -0:6 0.08 
0 0 1 0 1 0.4 -0:4 0.4 0.04 
0 0 1 1 1 0.4 0.6 0.4 0.08 
0 1 0 0 0 -0:6 -0:4 -0:4 0.05 
0 1 0 1 1 -0:6 0.6 0.6 0.02 
0 1 1 0 0 0.4 -0:4 -0:4 0.16 
0 1 1 1 1 0.4 0.6 0.6 0.02 
1 0 0 0 0 -0:6 -0:4 -0:6 0.05 
1 0 0 1 0 -0:6 0.6 -0:6 0.05 
1 0 1 0 1 0.4 -0:4 0.4 0.04 
1 0 1 1 1 0.4 0.6 0.4 0.05 
1 1 0 0 0 -0:6 -0:4 -0:4 0.05 
1 1 0 1 1 -0:6 0.6 0.6 0.05 
1 1 1 0 0 0.4 -0:4 -0:4 0.16 
1 1 1 1 1 0.4 0.6 0.6 0.05 

Appendix B 

An example of observed data for which the linear SNM estimates the causal risk difference outside the 
possible range at -1:83, whereas for the loglinear SNM the iterative algorithm fails to converge. We set 
n D 500. 

Zi Ai Yi freq/n 
0 0 0 0.13 
0 0 1 0.12 
0 1 0 0.07 
0 1 1 0.18 
1 0 0 0.1 
1 0 1 0.09 
1 1 0 0.21 
1 1 1 0.10 

Appendix C 

Three data sets generated according to the logistic SNM in the simulation study of section 4, but for 
which there is no solution to the estimating equation. Column 4 represents the expected frequency (total 



sample size is 400) for the model used for simulation, and columns 5–7 represent the observed fre- 
quencies within the data sets. Surprisingly, the departures of the observed frequencies from the expected 
frequencies are not extreme. 

Zi Ai Yi E(freq) freq 1 freq 2 freq 3 
0 0 0 80 81 79 84 
0 0 1 20 18 12 14 
0 1 0 10 14 9 9 
0 1 1 6.6667 7 8 6 
0 2 0 5.5556 3 9 7 
0 2 1 11.1111 3 8 7 
1 0 0 12.5 17 9 11 
1 0 1 4.17 4 8 3 
1 1 0 66.6667 69 70 69 
1 1 1 33.3333 36 25 27 
1 2 0 5.5556 7 5 3 
1 2 1 11.1111 6 18 11 
2 0 0 11.1111 12 17 12 
2 0 1 5.5556 17 6 13 
2 1 0 10 5 17 10 
2 1 1 6.6667 8 9 9 
2 2 0 50 46 54 40 
2 2 1 50 37 35 56 
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